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Abstract

Parallel computer systems are among the most complex of man’s cre-
ations, making satisfactory performance characterisation difficult. De-
spite this complexity, there are strong, indeed, almost irresistible, incen-
tives to quantify parallel system performance using a single metric. The
fallacy lies in succumbing to such temptations. A complete performance
characterisation requires not only an analysis of the system’s constituent
levels, it also requires both static and dynamic characterisations. Static
or average behavior analysis may mask transients that dramatically alter
system performance. :

Although the human visual system is remarkedly adept at interpret-
ing and identifying anomalies in false color data, the importance of dy-
namic, visual scientific data presentation has only recently been recog-
nised. Large, complex parallel systems pose equally vexing performance
interpretation problems. Data from hardware and software performance
monitors must be presented in ways that emphasise important events
while eliding irrelevant details. Design approaches and tools for perfor-
mance visualisation are the subject of this paper.
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The purpose of computing is insight, not numbers.

Richard Hamming

1 Introduction

The appearance of any new computer system raises many questions about its
performance, both in absolute terms and in comparison to other machines of
its class; parallel computer systems are no exception. Unfortunately, parallel
computer systems are among the most complex of man’s creations, making sat-
isfactory performance characterization difficult. Despite this complexity, there
are strong, indeed, almost irresistible, incentives to quantify paralle] system
performance using a single metric. The fallacy lies in succumbing to such temp-
tations. Just as it now is widely recognized that human intelligence is not
subsumed by the spatial and verbal abilities measured by standard intelligence
tests, complete characterization of parallel computer system performance en-
compasses more than operations executed per second.

Peak performance ratings in MIPS (millions of instructions per second) or
MFLOPS (millions of floating point operations per second) obscure the im-
portance of interacting performance levels and dynamic equilibrium. Repeated
studies have shown that a system’s performance is maximized when the com-
ponents are balanced (i.e., there is no single system bottleneck) [5]. As an
example, optimising the performance of message passing systems [17] requires
a judicious combination of node computation speed, message transmission la-
tency, and operating system software. High speed processors connected by high
latency communication links restrict the classes of algorithms that can be effi-
ciently supported.

A complete performance characterization requires not only an analysis of
the system’s constituent levels, it also requires both static and dynamic char-
acterisations. Static or average behavior analysis may mask transients that
dramatically alter system performance. By analogy, biological researchers have
long recognised the importance of both in vitro and in vivo measurements. Lab-
oratory measurements of isolated cells or biological molecules often differ from
similar measurements in natural environments.

The history of virtual memory research offers a classic example of transient
behavior and its importance. The slow drift model (4] predicted that program
reference locality changed slowly. Later, more detailed measurements showed
that reference localities change swiftly and catastrophically. Most page faults
and associated overhead occur in small time intervals, and a phase-transition
model more accurately reflects observed behavior.

Performance measurements of high-speed computing systems can quickly
generate vast quantities of numerical data. Indeed, recognition of the impor-
tance of virtual memory phase transitions was hampered by the volume of data
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Figure 1: Performance Levels

generated during simulation and measurement; post-measurement data com-
pression yielded page fault rates, a static performance measure. However, phases
and transitions can be seen only by examining significant portions of the refer-
ence trace; this is best done via dynamic graphic displays.

Although the human visual system is remarkedly adept at interpreting and
identifying anomalies in false color data, the importance of visual scientific data
presentation has only recently been recognised (7). Large, complex parallel
systems pose equally vexing performance interpretation problems. Data from
hardware and software performance monitors must be presented in ways that
emphasize important events while eliding irrelevant details.

In collaboration with the Center for Supercomputing Research and Devel-
opment at the University of Illinois, we are developing a suite of performance
visualization tools. These tools and our design approach are the subject of this
Paper. In §2 we examine the importance of performance levels and formalize
the empirical performance evaluation process. In §3 we discuss HyperViev, a
prototype that dynamically displays performance data obtained from hardware
measurement and simulation of message passing systems. Techniques for vi-
sualizing application performance are the subject of §4; linear programming
(6] (19] is used as a test problem. Finally, §6 summarises our experience and
development plans.

2 Experimental Performance Analysis

As Figure 1 illustrates, there are four levels in the hierarchy of performance
measurements. The answer to the oft-asked question, “How fast is it?” de-
pends on the intended use of the performance data. At the lowest level lies the
performance of the hardware design. Determining this performance provides
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both a design validation and directives for system software design. Only by
understanding the strengths and weaknesses of the hardware can system soft-
ware designers develop an implementation and user interface that maximizes
the fraction of the raw hardware performance available to the end user. As
an example, consider a hypothetical hypercube operating system that provides
dynamic task migration to balance workloads. To meet these goals, it must be
possible to rapidly transmit small status messages. It is fruitless to design such
a system if the underlying hardware provides only high-latency message trans-
mission. Given some characterisation of the balance between processing power
and interprocessor communication resulting from the system software, users can
develop algorithms that are best suited to the parallel system. Finally, the best
mix of key algorithms will maximise the performance of user applications.

Regardless of the system level, performance characterisation requires specifi-
cation of the desired measurements, instrumentation and data collection mech-
anisms, and data reduction and display; see Figure 2.1 Although it is clear that
a parallel computer system is a gestalt whose performance is inextricably tied to
the performance of its constituent hardware and software levels, it is less clear
that performance instrumentation and data collection techniques for one level,
or even one system, are rarely applicable to other systems or other levels. Asan
example, Table 1 shows a subset of the important performance measurements
for three levels — hardware, system sofiware, and algorithm and three systems
— the Cray X/MP, the University of Ilinois Cedar system (13], and the Intel
iPSC hypercube [16].

The diversity of underlying technology and system architecture makes it
impossible to develop a single set of performance instrumentation techniques.
Memory bank conflicts on the Cray X/MP have no analog on the distributed
memory Intel iPSC. Moreover, the event time scales differ by six orders of

!By snalogy with news reporting, “What do I want?" “How do I get it?” and “How can I
see it?”



Level Cray X/MP Illinois Cedar Intel i1PSC

vector startup | network contention processor speed
Hardware | memory " vector/cache communication
conflicts interaction latency and
bandwidth
Software compiler compiler OS support

Algorithm | vectorization | shared memory access | communication pattern

Table 1: Performance Level Comparison

magnitude. Similarly, the shared memory access patterns of Cedar application
algorithms may cause interconnection network conflicts, but these patterns are
not predictors of performance degradation due to network contention. Although
it is impossible to develop a single performance instrumentation mechanism
applicable to all levels, mechanisms for specification of noteworthy performance
events and their presentation are largely system independent.?

At all performance levels there exists a minimal set of required events (e.g.,
counts and times). Capture of these events should be enabled by signals to a
hardware monitor, operating system calls, or flags to a compiler preprocessor.
In addition to standard events, certain others must be enabled selectively, either
to minimise the performance perturbations of instrumentation or to reduce the
data volume to tractable levels. Ideally, a standard user interface should permit
event specification regardless of the event type or the performance level.

Despite the diverse instrumentation events of differing levels and systems,
the performance measures can be presented using a small number of display
types (e.g., bar and strip charts, three-dimensional plots, and state transition
diagrams). These graphical displays are the subject of the remainder of this
paper.

3 HyperView: A Hypercube Visualization Tool

In collaboration with the Center for Supercomputing Research and Develop-
ment, we have designed and implemented HyperView, a prototype performance
visualisation tool for distributed memory parallel processors configured as hy-
percubes. HyperView dynamically displays architectural and system activity
via a multiplicity of system views. Detailed performance measurements also are

2The events vary but the specification and display mechanism need not.



provided via standard statistical displays.

HyperView was inspired by Seecube [3], a hypercube visualisation system
built for the SunView® window environment. Although many of the HyperView
displays were borrowed from Seecube, the implementation is based on the X
window environment [18] and the user interface libraries provided by the Faust
parallel programming environment being developed at the University of Illi-
nois Center for Supercomputing Research and Development [10] [11] [12]. The
portability provided by X permits use of HyperView in a variety of workstation
environments. Because X supports a client-server paradigm, the data analy-
sis and display portions of HyperView are decoupled, potentially executing on
different systems. This decoupling not only makes the visualization portions
independent of message passing hardware and system software, it also is cru-
cial if real-time performance display and dynamic system reconfiguration are to
be supported. Thus, HyperView contains three cooperating modules — data
capture, state analysis, and visualisation.

3.1 Data Capture

The ByperView visualisation component accepts event traces generated by the
processors of a message passing system. Because the data capture is decoupled
from visualisation, the event trace can be generated via simulation, permitting
study of new message passing architectures, or from program execution. At
present, the HyperView visualisation is-driven by data obtained from simula-
tion of communication hardware for different message passing paradigms [9],
including store-and-forward message switching, circuit switching, staged circuit
switching, and wormhole circuit switching. Our experience has shown that
visual comparison of system dynamics quickly reveals differences in communi-
cation paradigms.

When an event is detected by the performance instrumentation, an event
identifier, a timestamp, and any additional event data are written to a trace
buffer. For our message passing simulations, we instrumented the simulator to
record the following information about message events at each hypercube node.
The following events suffice to display message passing activity for fixed-path
and adaptive variants of both circuit and store-and-forward message switching.

i <time> <nodes> <string> Initial message

m <time> <msg id> <from> <to> <size> Create message

q <time> <msg id> <at> Enqueue message

Q <time> <msg id> <at> Dequeune message

e <time> <msg id> <at> Circuit establishment

v <time> <msg id> <from> <to> <link> Visit node via link

t <time> <msg id> Begin message transmission
T <time> <msg id> End message transmission

3SunView is a trademark of Sun Microsystems.



V <time> <msg id> <from> <to> <link> Delete link between nodes
E <time> <msg id> <from> <to> Circuit termination
M <time> <msg id> Message delivery

For both circuit and packet switching, messages may require several trans-
missions and may cross multiple communication links to reach their final desti-
nation. Hence, the events recorded by a single hypercube node are insufficient
to reconstruct the history of a message. Thus, the from and to arguments in
the message creation event represent the point of message origination and the
final destination. Because we are studying routing paradigms that can choose
one of many paths to the destination node, link traversal information must be
saved to reconstruct the routing path.

Although the instrumentation events just described suffice to display com-
munication traffic and queueing delays, other events are needed to display sys-
tem software and application behavior. Thus, we are developing software and
hardware instrumentation for an Intel iPSC/2 hypercube that will permit near
real-time data capture of user, system and hardware events, including support
for local event buffering, global timestamp synchronisation, and trace process-
ing; see §5 for additional details.

3.2 State Analysis

In a distributed memory parallel system such as a hypercube, each node must
record events based only on local knowledge; the absence of global memory
precludes data sharing with the granularity necessary to dynamically maintain
a consistent, global state. Moreover, the nodes of many distributed memory
systems are individually clocked, the clocks often are not synchronized, and the
clocks may tick at different rates. Thus, the event trace at best defines a partial
time order, and the timestamps may be logically inconsistent with the logical
order of events.

To recover global state during trace analysis, the trace timestamps must be
reconciled and enough event data must be saved to correlate distributed events.
The analysis requires interpreting each event in sequence and incrementally
modifying the current system state; for complete details see (3].

3.3 Performance Visualization

The HypexView user interface permits simultaneous display of the dynamic sys-
tem state via a variety of differing views. Each view emphasises certain system
aspects (e.g., the network topology, the multiplicity of partially overlapping
paths from a source to a destination node, or queues of waiting messages). Each
view provides a different insight; collectively they convey system dynamics.
Although Hamming’s dictum applies, numbers are often necessary and im-
portant. In addition to graphical displays, HyperView provides statistical dis-



Figure 3: ByperView Top-Level Display

plays at both macroscopic levels (e.g., number of messages transmitted) and
microscopic levels (e.g., link utilization). Finally, HyperView permits selective
display of message traffic and statistics, permitting the performance analyst to
isolate anomalous behavior for further study.

Because HyperView is a dynamic performance visualization system, much is
lost in description of static, monochrome images. Despite these limitations, we
discuss HyperViev as a performance analyst might encounter it, beginning with
the top-level user interface shown in Figure 3. User menus are shown at the top
of the screen. Pulling down the Trace menu lists the Description, Execution
Control, and Statistics items shown in Figure 4.

3.3.1 Trace Description

In the Trace Description window, a performance analyst can select, by clicking
the mouse on the Trace File item, a trace file that contains the event informa-
tion captured during system execution. A dialogue box (not shown) will pop
up requesting the user to enter the trace file name. After reading the trace
file, HyperView begins the state analysis needed to recover the time varying
global state of the message passing system. During state analysis, HyperView
computes the number of events, messages and bytes transmitted. Throughout
the visualization session, these statistics can be viewed by selecting the Trace
Description menu.

3.3.2 Execution Control

As the name suggests, the Execution Control window controls updates to the
graphical and statistical displays. During state analysis, HyperView identifies
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Figure 4: ByperView Trace Window

a series of globally consistent display points. During updates of the trace dis-
play, ByperView moves between these display points. The current point can
be marked by a position in time and/or location in the event trace. Thus,
the performance analyst can select a current display time either by clicking the
mouse on Current Frame Time and entering a time, or by clicking the mouse
somewhere within the Frame Time slider bar. Event trace positions are selected
similarly. When a new time or event is selected, HyperView moves to the next
consistent system state and its corresponding display. Because the event trace
is processed a posteriori, the performance analyst can move both forward and
backward in time.*

A Frame in HyperView corresponds to a displayed system state. The user
can chanhge three aspects of frame display — mode, rate, and state differential.
Frames can be displayed either in single-step mode or continuously. If the mouse
is clicked on the SINGLE STEP button, the user must explicitly request display
of the next frame. Conversely, CONTINUOUS mode automatically advances to
the next frame specified by the frame rate and differential controls.

Via the Frame Rate control, the performance analyst can adjust the interval
between display of new frames. The third aspect of frame control is the change
in system state, in events or time, between successive, displayed frames. This
state difference is the minimum of the specified number of Events per Frame and

4§5 discusses both the advantages and disadvantages of time independent browsing.
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the number of Clock Ticks per Frame. By adjusting the display mode, frame
rate, and state differential, the performance analyst can study gross behavior,
examining a small subset of all states, or examine the trace event by event.

3.3.3 Global Statistics

The Statistics window shows the global system state, both cumulative message
statistics and current node and link activity. Because the performance analyst
can browse the trace, cumulative statistics are not monotonic — they reflect
performance data relative to the current trace state.

3.3.4 System Displays

Figure 5 shows the menu of dynamic system views provided by HyperView.
Figures 6 and 7 show the CUBE, FFT, PASCAL, and QUEUE views. Each dis-
play gives a different view of the hypercube that shows current system activity
as highlighted nodes and links. Each view emphasizes certain system aspects
(e.g., the network topology, the multiplicity of partially overlapping paths from
a source to a destination node, or queues of waiting messages). For example,
the CUBE view is the “natural” multi-dimensional representation of a hyper-
cube. In contrast, the FFT view emphasises message routing paths. The GRAY
CODE view, not shown, emphasises subcube communication — communication
links connecting the two D — 1-dimensional subcubes of a D-dimensional hy-
percube appear as parallel lines (3]. The PASCAL viey teflects the logarithmic
combining (e.g., global minimisation) when logical trees are embedded in the
hypercube topology [19]. The QUEUE view in Figure 7 shows the instantaneous
state of the message queues at each node. Each message awaiting transmission
is shown as a small box. Communication transients appear as bursts of en-

10



queued messages. Similarly, the effects of differing communication paradigms
(e.g., store-and-forward message switching and circuit switching) appear as dif-
ferences in mean queue size.

In all views, colors emphasise activity — links change color when messages
are sent, nodes flash when processing messages. Moreover, each system view
supports pull-down menus for inquiries about nodes, links, messages, and cir-
cuits. In each topological view (i.e., CUBE, FFT, and PASCAL), unwanted
detail can be elided via the Node and Link menus. For example, display of
any combination of transmitting, active, or receiving nodes and links can be
disabled. Figure 8 shows the Link menu; the Node menu is similar. All, Active
and Transmitting select the displayed link states.

3.3.5 Message and Circuit Tracking

In addition to elision of unwanted node and link details, HyperView supports
message tracking and circuil iracking.® After identifying source and destina-
tion nodes, only those messages in transit between the specified nodes are dis-
played. Figure 9 illustrates message and cizcuit tracking in a system with circuit
switched communication. In the figure, nodes 0 and 20 have been selected for
circuit tracking and message tracking, respectively. Node 0 is transmitting a
message to node 15 along the path shown. The intermediate nodes on the path
are not active because only circuit connections have been established there.
Concurrently, node 0 is sending a message to node 20, and node 20 is sending a
message to node 29.

Message and circuit tracking have proven invaluable when comparing com-
munication paradigms. By eliding extraneous detail, the dynamics of circuit
establishment in both fixed and adaptive routing paradigms can be easily com-
pared.

4 Application Performance Displays

Performance visualisation at both the hardware and system software levels pro-
vides important insight for system design and analysis. And because system per-
formance is manifest in the application software executed during performance
analysis, system level performance visualisation indirectly provides application
performance insight. However, insight from visualization of system performance
must be coupled with insight from application performance visualization to un-
derstand the interactions of different performance levels. To illustrate these
interactions and the importance of integrated visualisation tools, we use a par-
allel implementation of the simplex linear optimisation algorithm [6] (19] as
an example. Like many parallel algorithms, the performance of the simplex

5The choice and semantics depend on the underlying hardware communication paradigm.
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method varies greatly with input data, and these variations are intimately re-
lated to both the algorithm and its interaction with the hardware and system

software.

4.1 Linear Optimization: An Examplep

Lazge, sparse, linear systems of equations arise frequently when constructing
mathematical models of natural phenomena. Most often, these linear systems
are fully constrained and can be solved via a variety of direct or iterative tech-
niques. Howeverz, one important problem class requires solutions to undercon-
strained linear systems that maximise some objective function. These linear
optimization problems often contain hundreds of equations with thousands of
variables. Mathematically, this can be stated as:

Minimize: Tz

Subject to: Az =b

Here, cT is an n vector of variable coefficients that defines the objective function
(i.e., the function being minimized). For a maximization problem, the negative

14
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of the objective function can be minimized. The objective function can thus be
viewed as a cost function, where the goal is to minimize total cost. The m x n
linear system Az = b defines the linear constraints on the objective function z.
Each of the m rows of the matrix A defines a constzaint on the n variabies of
the objective function.

The optimization problem arises because the linear system Az = b is under-
constrained (i.e., m is smaller than n, and the matrix 4 contains many more
columns (variables) than rows (constraints)).® Consequently, there are many
possible z vectors that satisfy the system Az = b. A fundamental theorem of
linear programming states that an optimal solution, if it exists, occurs when
n —m elements of z are zero (i.e., when there are precisely m non-zero elements
of ). This corresponds to the solution of an m x m linear system, the basis,
obtained by selecting m of the n columns of the matrix A.

Clearly, exhaustive solution of the (,:) possible linear systems is not fea-
sible. The simplex method is a search algorithm that decreases the value of
the objective function at each iteration by selecting a non-zero element of z, a
so-called basic variable, and replacing the corresponding column of 4 with an-
other column. The simplex method provides a systematic way of moving from
one basic feasible solution (i.e., one satisfying the constraints) to another. This
systematic movement, called pivoting, must

®See Figure 11 for an example.
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o identify a new basis column that decreases the objective (cost) function
value,

o identify the column to remove from the basis that maximizes the decrease
in the objective function value while still satisfying the constraints, and

o replace the old basis column with the new one.

These transformations are realized by standard techniques from numerical linear
algebra (i.e., Gauss-Jordan elimination).

4.2 Parallel Simplex Variants

In message passing architectures, interprocessor communication is much more
expensive than local memory access. Hence, many algorithm implementation
details are constrained given the mapping of data to processors. The simplex
algorithm shares similar characteristics with solution of linear systems, matrix
multiplication, and other common matrix operations. Previous work on dis-
tributed matrix algorithms has advocated row or column partitioning of matri-
ces [1] [8] [15]. We have considered similaz schemes for distributing the matrix
of constraints across the nodes of a hypercube [19].

In the column partitioned method, shown in Figure 10, complete columns
are divided equally among the processors. To identify the column to enter the
basis, each hypercube node must first find the local minimum of the objective
values for those columns in its local memory, then cooperate with other nodes
to identify and distribute the identity of the column containing the minimum
objective value. Conversely, the single node containing the pivot column must
identify the column to leave the basis. Thus, partitioning the matrix by columns
creates both parallel and sequential computation phases.

In the row partitioned strategy, complete rows of the matrix are divided
equally among the processors. As Table 2 shows, this approach also creates

16



Partition| Entering Basis Column | Departing Basis Column | Gauss-Jordan Elimination

Colu;nn Parallel computation | Sequential computation Column global send

Global minimisation Parallel computation
Row Parallel computation Parallel computation Row global send
Global minimisation Global minimisation Parallel computation

Table 2: Hypercube Simplex Variations

both parallel and sequential computation phases.” Despite the similarities sug-
gested by Table 2, the performance of simplex algorithms based on row and
column data partitions can be strikingly different. Why? Distributed linear
systems solvers process n x n matrices. The constraint matrices processed by
the simplex method contain many fewer rows than columns. Moreover, the ratio
of the number of rows to columns can vary dramatically. This variance, coupled
with the differences in matrix sparsity, is manifest in the relative costs of com-
munication, sequential computation, and parallel computation. Hence, neither
row nor column partitioning is uniformly superior. To understand the dynamics
of algorithm interaction with matrix structure, application visualization tools
are necessary. :

4.3 Simplex Performance Visualization

Earlier study [19] suggested that, despite variations in matrix structure, rowp
partitioned simplex implementations often yielded better performance. How-
ever, counterexamples exist; Figure 11 shows the non-sero matrix structure of
one such problem. Although the 7:1 ratio of columns to rows suggests the
reason that column partitioning is preferable, the details are best grasped via
visualization.

Figures 12 and 13 show four views of the number of messages sent between
tasks of the row partitioned simplex algorithm on a 16 node Intel iPSC/2 hy-
percube. Recall that in a D-dimensional hypercube, a node with address n is
directly connected only to those other nodes with addresses whose binary expan-
sions differ from n in exactly one bit. Although messages must cross multiple
communication links to reach some nodes, the maximum distance between any
two nodes is D. When exploring performance at the hardware and system
software levels, understanding node connectivity is crucial. However, at the ap-
plication level, messages are exchanged by tasks, not hypercube nodes. Hence,

TIn reality, there are many subvariations of both row and colurn partitioning, and each
has differing performance; see [19] for complete details.
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Figure 12 ® and subsequent figures show the logical interaction of tasks, not the
physical transfer of data. We emphasise that complete understanding requires
performance visualisation at all levels, hardware, system software, algorithm,
and application. By separating the levels, the performance contributions of
each level are manifest.

In Figure 12 the peaks represent the logarithmic combining necessary to
identify global minima. In Figure 13 the logarithmic combining appears as
lightly shaded regions in the density view and as clustered contour lines in
the contour view. Because task zero is the root of the combining tree, during
each simplex iteration it must broadcast the identity of the task containing the
global minimum. The identified task then broadcasts the needed row to all other
tasks. If the workload were perfectly distributed, each task would broadcast an
equal number of times. Excluding messages due to the logarithmic combin-
ing, all other variations in communication traffic are attributable to this load

#1n the 3-dimensional displays, counts greater than thirty were clipped, hence the unifor-
mity.
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imbalance. The multiplicity of views reflects our belief that an integrated per-
formance visualization system should permit the performance analyst to select
those views that correspond to his or her personal preference and needs.

Figure 14 shows the volume of data exchanged between tasks. Comparing
Figure 14 with Figure 12 shows that tasks exchanging many messages do not
exchange a large volume of data. Why? The many messages necessary to
realise the combining tree are small; the row broadcasts require fewer, larger
messages. The performance ramifications of this bimodal distribution of mes-
sage sizes can only be understood by examining hardware and system software
performance displays. These displays show that message passing systems like
the Intel iPSC/2 have large message preparation times relative to communica-
tion link bandwidth, penalising small messages. Hence, message count is the
important performance metric, not message volume.

Finally, Figures 15 and 16 show the message count and volume for the column
partitioned simplex algorithm. As before, a combining tree is used to identify
global minima. However, as Table 2 shows, this global minimisation is used only
when finding an entering basis column. Because each task contains columns,
a sequential computation is used to identify the departing basis column. This
reduces the number of small message transmissions at the expense of reduced
parallelism. More importantly, however, broadcasting matrix columns is much
less expensive than the row broadcasts of the row partitioned algorithm. The
scales for figures 14 and 16 differ significantly; this is the reason the column
partitioned variant is superior for the matrix of Figure 11.

5 Current Research

The hardware and application performance visualisations Jjust described are ad
hoc and are not integrated. First, HyperView was designed primarily to dis-
play hardware performance. As such, it is not easily extensible to display of
application performance, nor should it be — display techniques for system and
application performance differ. Second, the simplex application visualizations
required manual instrumentation of the simplex code and extensive preprocess-
ing before they could be displayed using Mathematica, a symbolic manipulation
system and mathematician’s assistant not intended for this use. HyperView
and the simplex application visualization are facsimiles or rapid prototypes of
what is desired — an integrated performance specification, instrumentation, and
visualization system for message passing systems.

Figure 17 illustrates the ideal. This hypothetical system, called Tapestry
would weave together elements of the hardware, system software, and applica-
tion levels. The hardware and system levels, shown at the top of the figure
would, like HyperView and Seecube, dynamically display internode communi-
cation traffic® using multiple colors. Dynamic displays would include current

? Although the figure shows a four-dimensional hypercube, other views, such as the Pascal
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messages, cumulative traffic (either counts or volume), and link utilisation. Via
a mouse, the performance analyst also could choose from an extended menu of
performance displays for each node and link:

o external input/output (i.e., file accesses),

e processor utilisation,

o context switches,

e system calls,

e memory utilisation,

o memory reference patterns (i.e., reference localities),
e virtual memory paging activity, and

e message counts and volume by destination.

Each of these could be displayed in a variety of formats (e.g., perspective, his-
togram, strip chart, contour, or density).

The application performance level, illustrated at the bottom of Figure 17
would display the logical graph of the intertask communication pattern, not the
physical graph of the undetlying interconnection network. By dragging graph
nodes and edges with a mouse, the topological orientation of the graph could
be modified to reflect the performance analyst’s preferences. The application
performance level, like the hardware level, would include dynamic displays of
message traffic on the parailel program graph and via perspective, density, and
contour plots. In addition, pull-down menus for tasks would include:

e message counts and volume by destination,
e delays for message transmission or receipt,
e dynamic procedure call graphs, and

e execution profiles.

Finally, the visualisation system would permit correlation of system and appli-
-cation performance.

The astute reader will have realized that near real-time processing and dis-
play of such detailed performance data (e.g., memory reference patterns) implies
prodigious, indeed unrealistic, computing, storage, and display requirements.
Below, we discuss those features we believe are necessary to achieve the goal of
an integrated performance visualization system.

triangle, Gray code, or FFT would be supported also.
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5.1 Instrumentation and Visualization

The major limitation of HyperView, Seecube, and the simplex application visu-
alization is the absence of near real-time behavior. 4 posteriori examination of
performance data means that all data of potential interest must be captured a
priori. Despite the consequent increase in storage requirements, this is some-
times desirable — it permits performance data browsing across the entire inter-
val of execution, and it permits data capture at a level of detail incompatible
with near real-time processing. However, a posteriori examination also precludes
dynamic system or application reconfiguration based on observed performance.
Real-time display of even a portion of the captured data would permit the per-
formance analyst to selectively enable and disable performance instrumentation
based on observed behavior, reducing the storage requirements.

Despite the manifest advantages of interactive performance instrumenta-
tion and display, on most message passing systems, including the Intel iPSC/2
hypercube, a posteriori data display is unavoidable because there is insuffi-
cient communication bandwidth to transmit performance data to an external
host without distorting the performance being measured. Moreover, the lim-
ited memory at each node constrains the volume of performance data that can
be buffered for subsequent transmission. Clearly, hardware support for perfor-
mance data recording is crucial, and we assume its existence. However, detailed
discussion of hardwarze designs for performance instrumentation is beyond the
scope of this paper. See [2] for a discussion of the hardware requirements for
performance instrumentation.

A visualization system must be evolutionary, adapting to the changing de-
mands of hardware, system software, applications, and users. Thus, the im-
plementation must be extensible, permitting addition of new display formats
and performance metrics, and portable, permitting use with a variety of sys-
tems. These twin goals, extensibility and portability, suggest a modular, object-
oriented design that separates interface from implementation. Using the X
client-server paradigm (18] would provide portability and insure future exten-
sibility based on an emerging standard for window systems. However, X alone
provides neither the necessary abstractions (e.g., hierarchical performance dis-
plays) nor the rapid prototyping support; object-oriented window libraries such
as InterViews [14] are needed.

5.2 Current Status

Based on the lessons learned with ByperView, we are implementing an initial
version of Tapestry for the Intel iPSC/2 using X and InterViews. Initially,
software instrumentation of NX/2, the iPSC/2 operating system, will provide
data on system performance; a hardware monitor will be added later. Appli-
cation performance data are captured by instrumenting application and system
libraries, by modifying a compiler to automatically instrument application code,
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and by manually inserting instrumentation directives in application code.
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